Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation.

نویسندگان

  • Youtao Xie
  • Xuanyong Liu
  • Anping Huang
  • Chuanxian Ding
  • Paul K Chu
چکیده

We have investigated the surface bioactivity of titanium after water and hydrogen plasma immersion ion implantation. Plasma immersion ion implantation (PIII) excels in the surface treatment of components possessing a complicated shape such as medical implants. In addition, water and hydrogen PIII has been extensively studied as a method to fabricate silicon-on-insulator (SOI) substrates in the semiconductor industry and so it is relatively straightforward to transfer the technology to the biomedical field. In our investigation, water and hydrogen were plasma-implanted into titanium sequentially. Our objective is that water PIII introduces near-surface damages that trap hydrogen implanted in the subsequent step to improve the surface bioactivity while the desirable bulk properties of the materials are not compromised. Ti-OH functional groups can be detected on the (H(2)O+H(2))-implanted titanium surface by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. After incubation in simulated body fluids (SBF) for cytocompatibililty evaluation in vitro, bone-like hydroxyapatite was found to precipitate on the (H(2)O+H(2)) implanted samples while no apatite was found on titanium samples plasma implanted with water or hydrogen alone. Human osteoblast cells were cultured on the (H(2)O+H(2))-implanted titanium surface and they exhibited good adhesion and growth. Our results suggest a practical means to improve the surface bioactivity and cytocompatibility of medical implants made of titanium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical properties, bioactivity and corrosion resistance of oxygen and sodium plasma treated nickel titanium shape memory alloy

Nickel titanium (NiTi) shape memory alloy is a unique material displaying the shape memory effect and superelastic property making it attractive to the orthopedic field. However, with its high nickel content of∼50%, there is concern on health and safety when this material is implanted inside the human body for a prolonged period of time as toxic nickel ions may leach into the body due to corros...

متن کامل

Bioactivity of titanium following sodium plasma immersion ion implantation and deposition.

Bio-activation of titanium surface by Na plasma immersion ion implantation and deposition (PIII and D) is illustrated by precipitation of calcium phosphate and cell culture. The bioactivity of the plasma-implanted titanium is compared to that of the untreated, Na beam-line implanted and NaOH-treated titanium samples. Our data show that the samples can be classified into two groups: non-bioactiv...

متن کامل

Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by ma...

متن کامل

Surface modification of 9Cr18 bearing steels by a metal and carbon co-plasma immersion ion implantation

Ž . In the aerospace industry, 9Cr18 martensitic stainless steel AISI 440 is commonly used as a bearing material. Because of its Ž . ability to rapidly treat irregular industrial components, plasma immersion ion implantation PIII is an effective method to improve the wear resistance of 9Cr18 precision bearings and prolong their working lifetime. Vacuum arc plasma sources provide a good means of...

متن کامل

Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 26 31  شماره 

صفحات  -

تاریخ انتشار 2005